欢迎来到报考大学!
  • 微信
  • |
  • 微博
  • |
  • 在线客服
  • |
  • APP下载
  • |
  • 客服热线: 400-100-0233

温馨提示

网页暂不支持该功能,请打开报考大学APP,使用该功能

温馨提示

你所在考区由于2020年高考首次实行新高考政策,VIP暂不适用

温馨提示

北京、天津、山东、海南考区由于新高考政策的原因,暂不开放该功能

首页 > 发现 > 专题 > 正文

高中数学答题模板!掌握了,数学140分没问题!

加油amigo

收藏

2018-04-21

小编寄语:

高中数学是很多同学高考道路上的拦路虎,很多同学一致回答:大题没思路。高考数学6道大题,每题12分,一分都不能丢啊!


所以,报考大学网整理了高中数学的答题模板,大家要好好利用哈~


   选择填空题   

 

易错点归纳


九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。



答题方法


选择题十大速解方法


排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;


填空题四大速解方法


直接法、特殊化法、数形结合法、等价转化法。



   解答题   


一、三角变换与三角函数的性质问题


1、解题路线图


①不同角化同角


②降幂扩角


③化f(x)=Asin(ωx+φ)+h


④结合性质求解。


2、构建答题模板


①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。


②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。


③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。


④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。


 

二、解三角形问题


1、解题路线图


(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。


(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。


2、构建答题模板


①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。


②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。


③求结果。


④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。



三、数列的通项、求和问题


1、解题路线图


①先求某一项,或者找到数列的关系式。


②求通项公式。


③求数列和通式。


2、构建答题模板


①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。


②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。


③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。


④写步骤:规范写出求和步骤。


⑤再反思:反思回顾,查看关键点、易错点及解题规范。



四、利用空间向量求角问题


1、解题路线图


①建立坐标系,并用坐标来表示向量。


②空间向量的坐标运算。


③用向量工具求空间的角和距离。


2、构建答题模板


①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。


②写坐标:建立空间直角坐标系,写出特征点坐标。


③求向量:求直线的方向向量或平面的法向量。


④求夹角:计算向量的夹角。


⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。



五、圆锥曲线中的范围问题


1、解题路线图


①设方程。


②解系数。


③得结论。


2、构建答题模板


①提关系:从题设条件中提取不等关系式。


②找函数:用一个变量表示目标变量,代入不等关系式。


③得范围:通过求解含目标变量的不等式,得所求参数的范围。


④再回顾:注意目标变量的范围所受题中其他因素的制约。


 

六、解析几何中的探索性问题


1、解题路线图


①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)


②将上面的假设代入已知条件求解。


③得出结论。


2、构建答题模板


①先假定:假设结论成立。


②再推理:以假设结论成立为条件,进行推理求解。


③下结论:若推出合理结果,经验证成立则肯。  定假设;若推出矛盾则否定假设。


④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。



七、离散型随机变量的均值与方差


1、解题路线图


(1)①标记事件;②对事件分解;③计算概率。


(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。


2、构建答题模板


①定元:根据已知条件确定离散型随机变量的取值。


②定性:明确每个随机变量取值所对应的事件。


③定型:确定事件的概率模型和计算公式。


④计算:计算随机变量取每一个值的概率。


⑤列表:列出分布列。


⑥求解:根据均值、方差公式求解其值。



八、函数的单调性、极值、最值问题


1、解题路线图


(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。


(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。


2、构建答题模板


①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)


②解方程:解f′(x)=0,得方程的根。


③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。


④得结论:从表格观察f(x)的单调性、极值、最值等。


⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。



推荐专题:


高中物理常考题型与解题方法全汇总丨强烈建议收藏!

高中化学全部知识点详细总结 | 强烈建议收藏!

表情

全部评论2

  • 回复

    刘 敏 2018-04-30 0

    高考数学整张试卷力求稳定,正常没有偏题怪题的现象,各个层次的学生都可以做,能力稍差点的也可以做一步到两步,大题三角、立体几何和应用题都和平时的训练差不多,得分不成问题。

    表情
    回复
  • 回复

    吴 丽霞 2018-04-28 0

    步骤不错,值得借鉴呢

    表情
    回复
所有专题

密码登录

手机短信登录

手机号码
密码
30天自动登录
登录

加入报考大学

助你考得好,更能报得好
手机号码
验证码
设置6~18位密码
我已阅读并接受 用户协议隐私政策
注册

报考大学已全面升级,将提供更全面的院校信息与志愿填报服务,请先完善个人信息。

立即完善个人信息

欢迎进入报考大学

请选择你的考区所在地

开始使用报考大学
tel

全国咨询电话

400-100-0233

售前客服QQ 售后客服QQ
微信公众号
wx
扫一扫,最新报考资讯
微信公众号
app
扫一扫,下载手机APP
拖动左边滑块完成上方拼图